
Inference in Gaussian Process Models for Political Science∗

JBrandon Duck-Mayr

Abstract

Political scientists often seek to perform inference in settings where knowledge about
the functional form mapping predictors to outcomes is imperfect or the traditional as-
sumption of conditional independence of observations does not hold. Recently Gaussian
process (GP) models, a family of machine learning techniques, have been used to study
politics in such settings; however, many inferential quantities of interest to political
science have either not been derived in the statistical and machine learning literature
the models hail from or have not been employed in the political science literature yet. I
provide practical guidance for applied researchers to implement GP models for more
accurate inference in their research, including how to obtain quantities of interest to
political scientists, the derivations of which are novel to the GP model literature.

∗I would like to thank Jacob Montgomery and participants at Washington University in St. Louis’
Political Data Science Lab for their helpful comments.



1 Introduction

Gaussian process (GP) models, a class of machine learning techniques, are increasingly being

employed to study politics, from measuring ideology (Gill 2020; Duck-Mayr, Garnett, and

Montgomery 2020)1 to dealing with violations of conditional independence in time-series

cross-sectional data (Carlson 2020). GP models are powerful tools to model the relationship

between predictors and outcomes when the functional form mapping predictors to response is

imperfectly known or observations may not be conditionally independent, common settings in

political science. However, inference in the machine learning setting often focuses (sometimes

exclusively) on prediction, while other inferential quantities are often of interest to political

scientists. I show how these models can be used to obtain quantities of interest to political

scientists, including a novel derivation of average marginal effects for GP models.2 I first

provide a primer on GP models, explaining their particular import for political science

specifically. I highlight their nascent use in political science, briefly explaining existing

approaches to inference with GP models in the political science literature. I then outline

how to obtain a number of other quantities of interest and provide practical guidance in the

use of these models to enable the discipline to better harness these powerful tools for social

scientific inference.

2 A Primer on GP Models

Generally we want to reason about the relationship between predictors X and outcomes y.

So, we generally say

yi = f (xi) + εi, (1)

1Gill (2020) uses “spatial kriging,” which is a type of GP model, to extrapolate ideology measures spatially
across the U.S., while Duck-Mayr, Garnett, and Montgomery (2020) develop a novel GP item response
theoretic model (GPIRT).

2The full derivations can be found in the appendix; in the main body of the paper I present results and
practical guidance.
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where yi is our observed outcome for observation i, xi is our observed vector of predictors

for observation i, and εi is the error term—some added random noise. Then, we want to

learn about f (X). A stereotypical approach in political science is to assume a functional

form for f , and that the noise elements εi are independently distributed. In that case our

task is to perform inference on the parameters of f . A number of non-parametric approaches

are available when the form of f is unknown, and a variety of statistical fixes have been

developed for various correlation structures of ε.

A non-parametric approach common in the machine learning literature and now starting

to gain traction in political science is to model f as a Gaussian process (GP) (Rasmussen

and Williams 2006).3 While there are many methods that have been developed to accomplish

non-parameteric inference or handle error correlation, GP models have risen to prominence

because in addition to their flexibility, they represent a principled, probabilistic approach

that presents a very general framework applicable in a variety of settings (Cheng et al. 2019).

Moreover, they can outperform even tailored models for many inferential problems; for

example, Carlson (2020) finds GP regression to be more effective at handling error correlation

in time-series cross-sectional data than other existing approaches.

A GP is an infinite dimensional generalization of the normal distribution, where any finite

subcollection of the process’ variables are normally distributed. This is accomplished by

specifying the mean and covariance of the distribution as a function of the predictors:

f ∼ GP (µ (X) , K (X,X)) , (2)

where µ is a function (such as, for example, Xβ for a vector of coefficients β) that gives the

mean of the distribution of f at X and K (X,X ′) is a matrix-valued function that gives the

covariance between values of f at X and X ′, such that for any finite set of observations X,

f = f (X) has a prior distribution
3Rasmussen and Williams (2006) is a comprehensive textbook for GP classification and regression. A

reader seeking a treatment that is much more in-depth should consult Rasmussen and Williams (2006).
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f ∼ N (µ (X) , K (X,X)) . (3)

In the regression case, where y is continuous and we use a normal likelihood with variance

σ2
y, we can then learn about f after observing X and y by appyling Bayes’ theorem along

with Gaussian identities to derive the exact posterior over f ,

f | X,y ∼ N (m∗,C∗) , (4)

m∗ = µ (X) +KK−1
y (y− µ (X)) , (5)

C∗ = K −KK−1
y K, (6)

Ky = K + σ2
yI, (7)

where we write K = K (X,X) for more compact notation.4 Notice, then, that (for example)

Bayesian linear regression is simply a special case of GP regression; GP regression with

µ (X) = 0 and K (X) = XXT returns the same solution as linear regression with standard

normal priors on the coefficients.

This allows us to learn about potentially nonlinear functions of X with very mild assump-

tions. The assumptions we are making about f are largely through our choice of the mean

function µ and the covariance function, or kernel, K. The common choice in the machine

learning literature is to choose µ (X) = 0, giving a vague prior over f where all learning

about f goes through the kernel. We may also choose a linear mean, µ (X) = Xβ, encoding

an assumption that f should have a linear trend, though perhaps with nonlinear deviations

or correlated errors.

An overwhelmingly popular choice for the kernel is the squared exponential covariance

function, in which the covariance between f (xi) and f (xj) is given by
4Although this derivation is available in multiple sources in varying levels of detail, including Rasmussen

and Williams (2006), I provide a derivation in the appendix as well.
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k (xi,xi) = σ2
f

(
−0.5

∑
d

(xid − xjd)2

`2
d

)
, (8)

where σ2
f is a scale factor scaling the entire prior covariance matrix and ` is a vector of length

scales. This kernel corresponds to assuming that (1) f is smooth,5 and (2) the correlation

between values of f should decrease with distance in the covariate space. Then ` determines

how we define “closeness” along each dimension of X. Often an isotropic version of this

kernel is used where ` is instead a scalar, treating distance in every dimension the same. This

kernel should similarly be most useful in political science; these assumptions match up to

problems where we must account for correlated errors across space or time (Carlson 2020;

Gill 2020), and notably is also equivalent to a linear model with infinite basis expansion.

To make this more concrete, consider the following example, where

f (x) = 2 sin (2x) + x, (9)

y = f (x) + ε, (10)

ε ∼ N (0, 1) . (11)

So, we have a function mapping the single predictor variable x to outcomes y with a linear

trend and we have independent noise, but the function also has systematic nonlinear deviations.

Figure 1a shows a vague, zero-mean GP prior over f , using the squared exponential covariance

function. I simulated 250 x values, drawn from a uniform distribution with bounds −π and

π (which allows for two full oscillations of f), then simulated corresponding y values with

standard normal noise. We can see the posterior from Equation (4) depicted in Figure 1b;

essentially we have taken the somewhat mild assumptions encoded by the covariance function

that f is smooth and that covariance between function outputs decreases with distance in x to

derive a reasonable estimate of f (depicted with the solid line) with a measure of uncertainty
5For scholars interested in modeling functions that are not smooth, other kernel options are available with

a similar proximity assumption. Please consult Chapter 4 in Rasmussen and Williams (2006) for details.
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Figure 1: An example GP prior and posterior for the function f (x) = 2 sin (2x)+x. Simulated
data points are depicted with crosses, the prior (posterior) mean with a solid line and the
95% CI with a shaded region, and the true f (x) with a dashed line.

(depicted with the shaded region).

For modeling discrete outcomes, the posterior becomes intractable; however, good approx-

imations of the posterior in important cases have been derived. For example, for dichotomous

outcomes, we simply say

Pr (yi = 1) = σ (f (xi)) , (12)

f ∼ GP (µ (X) , K (X)) , (13)

where f is then a latent function fed though σ, which is some sigmoid “squashing” function

mapping the reals to [0, 1], such as using a logistic or probit likelihood, to obtain the probability

of a postitive response. This gives us a very similar setup to a generalized linear model such

as the probit or logit regression, with the difference being that we do not assume as much

about the structure of the latent function f . While the posterior does not have a closed form

as in the regression case, we can solve for a Laplace approximation to the posterior centered

at the posterior mode f̂ ,

f | X,y ∼ N
(

f̂ ,
(
K−1 +W

)−1
)
, (14)
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Figure 2: An example GP prior and posterior for the function f(x) = 2 sin(2x) + x, where
the data were simulated as x ∼ U(−π, π),Pr(y = 1) = σ(f(x)), where σ is the logistic
function. Observations receiving positive labels are depicted in the rug on the top margin,
while observations receiving negative labels are depicted in the rug on the bottom margin;
the prior (posterior) mean with a solid line and the 95% CI with a shaded region, and the
true f(x) with a dashed line.

f̂ = µ (X) +K
(
∇ log p

(
y | f̂

))
, (15)

W = −∇∇ log p
(
y | f̂

)
, (16)

and other approximations based on minimizing Kullbeck-Liebler divergence are available as

well, in addition to being able to simulate the posterior via MCMC sampling, commonly

utilizing an elliptical slice sampler (Murray, Adams, and MacKay 2010).

Taking the same example function and simulated x values we used to illustrate GP

regression, I draw corresponding dichotomous y values where Pr (y = 1) = σ (f (x)), where σ

is the logistic function. A zero mean GP prior with squared exponential covariance function

is depicted in Figure 2a, and the Laplace approximation of the posterior from Equation (14)

is depicted in Figure 2b.

Modelling the relationship between predictors and outcomes as a GP offers a flexible but

principled approach with a number of advantages over other approaches. Unlike parametric

approaches, we can be agnostic a priori as to the shape of the relationship between predictors

and outcomes, accounting for our typical uncertainty over functional form as social scientists.
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When compared to many non-parametric approaches that are similarly agnostic, the GP

approach provides a more principled probabilistic approach that is more readily extended to

varied settings. Finally, as I show in Section 4, the GP approach still allows us to recover and

make probabilistic statements about inferential quantities of interest to political scientists.

3 GP Models in Political Science

While GP models have a longer history in statistics and machine learning, they are just

beginning to take hold in the study of politics. The GP approach is particularly suited

to the study of politics as political scientists often confront situations in which we should

acknowledge some uncertainty regarding functional form, or (as may be the modal case in

political science) the common assumption of independent errors is violated.

Carlson (2020) considers TSCS data, common in many areas of political science, and

recommends GP regression for those settings. Carlson (2020) shows GP regression outperforms

a variety of previous approaches such as lagged dependent variable, fixed effects, and random

effects specifications, as well as panel-corrected standard errors in the TSCS setting. Gill

(2020) similarly utilizes a GP model to handle spatial autocorrelation.

Duck-Mayr, Garnett, and Montgomery (2020) develop an IRT model where, rather than

assuming the functional form of the response functions, a GP prior is placed over latent

response functions fed into a logistic likelihood. Among their applications demonstrating the

method, the authors estimate ideology of members of the House of Representatives in the

116th U.S. Congress. They show this more flexible approach that acknowledges uncertainty

over the functional form of the roll call votes’ response functions allows for more plausible

estimates of extremist members’ ideology; while parametric methods that impose monotonicity

of responses in ideology force extreme members such as Rep. Alexandria Ocasio-Cortez who

often vote against the moderate proposals of her own party to be placed closer to the opposing

party, a flexible GP approach can recognize that members such as she should be placed at
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the end of the ideological spectrum and instead allow the item response function to bend

downwards in such situations.

As political scientists are increasingly taking advantage of the flexible GP approach to

handle data that pose difficulties for inference using traditional approaches, I next provide

practical guidance for applied researchers and derive distributions of inferential quantities of

interest to political scientists that are not covered in the machine learning literature where

the lion’s share of study of GP models has occurred.

4 Tools for Inference in GP Models

A common goal for those employing GP models is out of sample prediction, so the typical

inferential quantity of interest is the distribution of the unknown function at test points. The

machine learning literature on GP models has largely focused on this sort of inference in

various settings. Political scientists are more often interested in parsing out the effects of the

predictors. After explaining the usual process for inference in GP models, I will also show

how to derive two types of effects of predictors: the distribution of coefficients if a linear

mean function is employed, and the distribution of average marginal effects of predictors

whether or not a linear mean function is employed. The former is useful for determining

the contribution of a predictor to a linear trend within f , while the latter is necessary for

uncovering the full average effect of a predictor on outcomes, since we allow for a potentially

nonlinear relationship between predictors and outcomes. A convenient interface to obtain the

distribution of all of these quantities is provided in an R package.6

When the goal is prediction, inference for GP models often follows the following sequence:

first, make choices about the GP prior, including the structure of the mean and covariance

functions; next, set the parameters of the mean and covariance functions (such as the
6A number of packages are available for fitting and predicting out of sample for GP models, both in R and

in a number of other programming languages and software environments including python and MATLAB.
However, no currently available software implements average marginal effects or provides posterior inference
over linear mean function coefficients.
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coefficients of a linear mean function, or the scale factor of a squared exponential covariance

function) as a model selection step by choosing them to use the GP prior that maximizes the

log marginal likelihood of the model given the training data; finally, use the training data

and the selected hyperparameters to predict out of sample for test data. This workflow is

very effective for generating probabilistic predictions for unknown data generating processes.

The posterior predictive distribution for GP regression at test cases X∗ is

f∗ | y,X ∼ N
(
µ (X∗) +K∗K

−1
y (y− µ (X)) , K∗∗ −K∗K−1

y KT
∗

)
, (17)

with a common shorthand of K∗ = K (X∗,X) and K∗∗ = K (X∗,X∗), and the posterior

predictive distribution for classification (using the Laplace approximation) is

f∗ | y,X ∼ N
(
µ (X∗) +K∗∇ log p

(
y | f̂

)
, K∗∗ −K∗

(
K +W−1

)−1
KT
∗

)
. (18)

However, often other inferential quantities are of more interest than out of sample

predictions. For example, suppose you believe the important underlying relationship between

your predictors and outcomes is in fact linear, but you also want to explicitly model and

account for correlated errors, as in Carlson (2020). Then you may use a model of the following

form:

y ∼ N
(
f (X) , σ2

yI
)
, (19)

f ∼ GP (Xβ,K (X,X)) , (20)

where your quantity of interest is β. Then it would not be useful to treat the mean function

parameters as a model selection problem; rather we want to find the distribution of those

parameters themselves instead of the distribution of f . One approach would be to place priors

on the mean function and covariance function parameters to get the posterior distribution
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of all the GP prior’s hyperparameters; this approach, taken in Carlson (2020), however,

generally requires MCMC sampling, as priors on the covariance function hyperparameters

generally result in the posterior being analytically intractible.7

If the covariance function parameters are not directly of interest, however, we can set those

using Bayesian model selection as in the general prediction workflow; then, with covariance

function parameters in hand, the posterior distribution of β is

β | y,X ∼ N (β̄,Σβ), (21)

β̄ = (B−1 + XTK−1
y X)−1(B−1b + XTK−1

y y), (22)

Σβ = (B−1 + XTK−1
y X)−1, (23)

where b is the prior mean of β and B is the prior covariance of β.8

However, if our motivation for using a GP approach is flexibility in the form of f rather

than being interested only in posterior inference over a linear trend contained in f , we should

instead perform inference on the average marginal effect of our predictors. As this is not a

task common in the use of GP models in computer science, the machine learning literature

on GP models provides no explicit derivation for this quantity, although for other reasons,

building blocks we need for it have previously been derived.

To formalize, we want to reason about the relationship between predictors X and outcomes

y, and specifically wish to know the marginal effect of a particular predictor d, i.e., the dth

feature of X. In a parametric regression model where we assume f (X) = Xβ and simply

estimate β, the marginal effect of Xd is easy to see: ∂ f (xi)
∂ xid

= β̂d,∀i. In GP regression

and classification, we gain a much more flexible model that allows for non-independence

of observations and non-linear mappings from X to y, but then feature d does not have a

constant effect on y. We can summarize the effect of feature d on y with the sample average
7A bespoke MCMC sampler for GP regression with priors on all hyperparameters is also offered in the R

package, which provides samples much faster than the general-purpose Stan implementation used for Carlson
(2020).

8See Rasmussen and Williams (2006) Section 2.7. A full derivation is also offered in the appendix.
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marginal effect,9 which in the regression context is defined as

γd ,
1
N

N∑
i=1

∂ f (xi)
∂ xid

. (24)

For classification, γd gives us the sample average partial effect, or the sample average effect

on the latent function f , which does not directly translate to the average marginal effect on

our dichotomous outcomes y. In this case, often of more interest than γd is

πd ,
1
N

N∑
i

∂ σ (f (xi))
∂ xid

, (25)

which gives the average marginal effect of predictor d on the function σ (f (X)) that gives

the probability of a positive response.

Moreover, when d is discrete, instanteous change in f at our observed points is not

meaningful; then we want the average discrete change in f at levels of predictor d. For binary

variables, let X∗1 be a set of test points where all feature observactions are identical to X

except that all observations of feature d have been set to 1, and analogously for X∗0.10 Then

a more appropriate quantity of interest rather than γd is

δd ,
1
N

N∑
i=1

f (x∗1i)− f (x∗0i) , (26)

which gives the average marginal effect on y of taking a 1 vs a 0 value in the regression case,

or the average partial effect on f of taking a 1 vs a 0 value in the classification case. For

classification, the effect on the probability scale is

ψd ,
1
N

N∑
i=1

σ (f (x∗1i))− σ (f (x∗0i)) . (27)

For categorical variables, we simply find δd or ψd for all substantively interesting pairwise

comparisons of levels of the categorical variable. (Often this is comparing the various
9See Hainmueller and Hazlett (2014) for a similar approach with kernel-regularized least squares.

10You can replace 1 and 0 with other binary value labels as needed.
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categorical labels to one “baseline” label).

Our starting point for deriving these quantities is noting that “[s]ince differentiation is a

linear operator, the derivative of a Gaussian process is another Gaussian process” (Rasmussen

and Williams 2006, 191). Let

fd =



∂ f1

∂ x1d
...

∂ fn
∂ xnd

 . (28)

Using Equation 9.1 in Rasmussen and Williams (2006),

Kd , C [fd, f ] =



∂ k (x1,x1)
∂ x1d

. . .
∂ k (x1,xn)

∂ x1d
... . . . ...

∂ k (xn,x1)
∂ xnd

. . .
∂ k (xn,xn)

∂ xnd

 , (29)

Kdd , C [fd, fd] =



∂ 2k (x1,x1)
∂ x1d ∂ x1d

. . .
∂ 2k (x1,xn)
∂ x1d ∂ xnd

... . . . ...
∂ 2k (xn,x1)
∂ xnd ∂ x1d

. . .
∂ 2k (xn,xn)
∂ xnd ∂ xnd

 , (30)

To make the notation more compact, as is usual we set K = K (X,X), and additionally

set µ = µ (X) and

µd =



∂ µ (x1)
∂ x1d
...

∂ µ (xn)
∂ xnd

 . (31)

Then we can describe the joint prior on f and fd:
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 f

fd

 ∼ N

 µ
µd

 ,
K KT

d

Kd Kdd


 , (32)

and for regression and under normal approximations of the posterior for classification,11 the

posterior distribution of fd given X and y is normal with mean

E [fd | X,y] =
∫
E [fd | f ,X] p (f | X,y) df

= µd +KdK
−1 (E [f | X,y]− µ) , (33)

and variance

V [fd | X,y] = Kdd −KdK
−1 KT

d + E
[
(E [fd | f ]− E [fd | X,y])2

]
= Kdd −Kd

(
K−1 −K−1 V [f | X,y]K−1

)
KT
d . (34)

(The full derivations for all results in this section are provided in the appendix for the

interested reader). In the regression case,

E [fd | X,y] = µd +KdK
−1
y (y− µ) , (35)

V [fd | X,y] = Kdd −KdK
−1
y KT

d , (36)

For classification, under the Laplace approximation to the posterior,

E [fd | X,y] = µd +Kd

(
∇ log p

(
y | f̂

))
, (37)

V [fd | X,y] = Kdd −Kd

(
K +W−1

)−1
KT
d . (38)

11When simulating the posterior for classification rather than using an analytical approximation, fd is
normally distributed given each f draw (with mean µd +KdK

−1 (f − µ) and variance Kdd −KdK
−1KT

d ), so
fd samples can simply be taken conditioned on the f samples.
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Since then γd is a constant ( 1/N ) times the sum of correlated normal random variables,

γd ∼ N

 1
N

N∑
i=1

mγdi ,
1
N2

N∑
j=1

N∑
i=1

cγdij

 , (39)

mγd
= E [fd | X,y] (40)

Cγd
= V [fd | X,y] (41)

Importantly, we may also get the average marginal effect of feature d within subgroups of X

rather than the full sample average by simply altering the indices of summation in Equation

(39). The distribution of δd is analogous:

δd ∼ N

 1
N

N∑
i=1

mδdi ,
1
N2

N∑
j=1

N∑
i=1

cδdij

 , (42)

mδd
= E [f∗1 | X,y]− E [f∗0 | X,y] , (43)

Cδd
= V [f∗1 | X,y] + V [f∗0 | X,y] + C [f∗1 , f∗0 | X,y] + C [f∗0 , f∗1 | X,y] . (44)

Unfortunately, the distribution πd cannot be analytically expressed, though we can readily

simulate from it. First note that

∂ σ (f (xi))
∂ xid

= ∂ σ (f (xi))
∂ f

∂ f (xi)
∂ xid

. (45)

Generally the sigmoid function σ has a known derivative; for example, in the logistic case,

∂ σ (f (xi))
∂ f

= σ (f (xi)) (1− σ (f (xi))) . (46)

Since we have an approximation to the posterior on f , and given f , the posterior over fd is

fd | f ∼ N
(
µd +KdK

−1 (f − µ) , Kdd −KdK
−1 KT

d

)
, (47)
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we can obtain M samples of πd by

• drawing f t from the chosen posterior approximation, such as the Laplace approximation

N
(
µ+K

(
∇ log p

(
y | f̂

))
, (K−1 +W )−1),12

• drawing f td from N
(
µd +KdK

−1 (f t − µ) , Kdd −KdK
−1 KT

d

)
,

• and calculating πtd = 1
N

N∑
i=1

∂ σ (f ti )
∂ f

f tid,

so that we can summarize the distribution of πd using the M draws, similar to the

CLARIFY procedure (King, Tomz, and Wittenberg 2000). We can also similarly simulate

the distribution of ψd by simply generating values of f (X∗1) and f (X∗0) from the posterior

approximation, pushing those samples through the chosen sigmoid σ, and calculate the

average of the differences to get the average marginal effect for each sample so that we can

summarize the distribution of average marginal effects.

We can illustrate the use of average marginal effects in GP models by returning to our

previous example. For the function f(x) = 2 sin (x) + x where x ∼ U (−π, π), the true

average marginal effect of x on f (x) is 1—the oscillations cancel out and we are left with the

effect of the linear term. In other words, on average, f (x) increases with x at a rate of 1,

which is often the type of information we want to have about functions of interest as political

scientists. For the dichotomous simulated data we may also be interested in the average

slope of σ (f (x)); here, the true average marginal effect of x on σ (f (x)) is 0.146. Figure 3

shows the posterior means and 95% CIs for the average marginal effects in the regression

and classification cases, with linear model baselines depicted for comparison; we can see the

average marginal effect on both f (x) and σ (f (x)) is captured well by the GP models. Even

though there is a true linear trend in f and the nonlinear deviations are designed to cancel

out over the range of the simulated x values, the linear models by contrast poorly estimate

the average marginal effect of x on both the link and probability scales.

12At this point, since we have resorted to simulation, it may be tempting to use ESS to draw from the
posterior. This can be done, but then we lose the ability to perform simple model selection for GP prior
hyperparameters, resulting in markedly increased computation time.
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for both regression and classification; the right panel shows the AME of x on the probability
of a positive outcome in classification. The true theoretical AME is given by the dashed line
in both panels.
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Appendix

A Derivation of posterior over β in GP regression

In Gaussian process regression, we have the following model specification:

y ∼ N (f(X) +Xβ, σ2
yI), (48)

β ∼ N (b, B), (49)

f ∼ GP(0, K(X)). (50)

Suppose we want the posterior distribution of β. We find

p(β | y,X) ∝ p(y | β)p(β) (51)

= N(y;Xβ,Ky)×N(β; b, B), (52)

where

Ky = K(X) + σ2
yI. (53)

We can show

β | y ∼ N (β̄,Σβ), (54)

β̄ = (B−1 +XTK−1
y X)−1(B−1b+XTK−1

y y), (55)

Σβ = (B−1 +XTK−1
y X)−1 (56)

with a bit of tedious algebra:

i



p(β | y,X) ∝ exp
(
−1

2
[
(y −Xβ)TK−1

y (y −Xβ) + (β − b)tB−1(β − b)
])

(57)

= exp
(
−1

2

[
yTK−1

y y − βTXTK−1
y y − yTK−1

y Xβ + βTXTK−1
y Xβ (58)

+ βTB−1β − bTB−1β − βTB−1b+ bTB−1b

])

= exp
(
−1

2

[
βTB−1β + βTXTK−1

y Xβ − βTB−1b− βTXTK−1
y y (59)

− bTB−1β − yTK−1
y Xβ

]

− 1
2

[
yTK−1

y y + bTB−1b

])

= exp
(
−1

2

[
βT (B−1 +XTK−1

y X)β − βT (B−1b+XTK−1
y y) (60)

− (bTB−1 + yTK−1
y X)β

]

− 1
2

[
yTK−1

y y + bTB−1b

])

= exp
(
−1

2

[(
β − (B−1 +XTK−1

y X)−1(B−1b+XTK−1
y y)

)T
(61)

× (B−1 +XTK−1
y X)

×
(
β − (B−1 +XTK−1

y X)−1(B−1b+XTK−1
y y)

)]

− 1
2

[
yTK−1

y y + bTB−1b

])

∝ exp
(
−1

2

[(
β − β̄

)T
Σ−1
β (β − β̄)

])
, (62)

which is clearly the core of a normal distribution.
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B Distribution of derivatives of Gaussian processes

Luckily, “[s]ince differentiation is a linear operator, the derivative of a Gaussian process is

another Gaussian process” (Rasmussen and Williams 2006, 191).

Let

fd =



∂ f1

∂ x1d
...

∂ fn
∂ xnd

 . (63)

Using Equation 9.1 in Rasmussen and Williams (2006),

Kd , C [fd, f ] =



∂ k (x1,x1)
∂ x1d

. . .
∂ k (x1,xn)

∂ x1d
... . . . ...

∂ k (xn,x1)
∂ xnd

. . .
∂ k (xn,xn)

∂ xnd

 , (64)

Kdd , C [fd, fd] =



∂ 2k (x1,x1)
∂ x1d ∂ x1d

. . .
∂ 2k (x1,xn)
∂ x1d ∂ xnd

... . . . ...
∂ 2k (xn,x1)
∂ xnd ∂ x1d

. . .
∂ 2k (xn,xn)
∂ xnd ∂ xnd

 , (65)

To make the notation more compact, as is usual we set K = K (X,X), and additionally

set µ = µ and

µd =



∂ µ (x1)
∂ x1d
...

∂ µ (xn)
∂ xnd

 . (66)

Then we can describe the joint prior on f and fd:

iii



 f

fd

 ∼ N

 µ
µd

 ,
K KT

d

Kd Kdd


 . (67)

Then the posterior distribution of fd given X and y is normal with mean

E [fd | X,y] =
∫

E [fd | f ,X] p (f | X,y) df (68)

=
∫
µd +KdK

−1 (f − µ) p (f | X,y) df (69)

= µd +KdK
−1 (E [f | X,y]− µ) , (70)

and variance (using the law of total variance)

V [fd | X,y] = Kdd −KdK
−1 KT

d + E
[
(E [fd | f ]− E [fd | X,y])2

]
(71)

= Kdd −KdK
−1 KT

d

+ E

(µd +KdK
−1 (f − µ)

−
(
µd +KdK

−1 (E [f | X,y]− µ)
))2

 (72)

= Kdd −KdK
−1 KT

d

+ E

(KdK
−1 (f − µ)−KdK

−1 (E [f | X,y]− µ)
)2
 (73)

= Kdd −KdK
−1 KT

d

+ E

(KdK
−1f −KdK

−1µ

−KdK
−1 E [f | X,y] +KdK

−1µ

)2
 (74)

= Kdd −KdK
−1 KT

d + E

(KdK
−1f −KdK

−1 E [f | X,y]
)2
 (75)
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= Kdd −KdK
−1 KT

d + E

KdK
−1
(

f − E [f | X,y]
)2

K−1KT
d

 (76)

= Kdd −KdK
−1 KT

d +KdK
−1 E

(f − E [f | X,y]
)2
K−1KT

d (77)

= Kdd −KdK
−1 KT

d +KdK
−1 V [f | X,y]K−1KT

d (78)

= Kdd −Kd

(
K−1 −K−1 V [f | X,y]K−1

)
KT
d . (79)

B.1 The regression case

In the regression case,

E [fd | X,y] = µd +KdK
−1 (E [f | X,y]− µ) (80)

= µd +KdK
−1
(
µ+KK−1

y (y− µ)− µ
)

(81)

= µd +KdK
−1
(
KK−1

y (y− µ)
)

(82)

= µd +KdK
−1
y (y− µ) , (83)

where, as usual, Ky = K + σ2
yI. Then

V [fd | X,y] = Kdd −Kd

(
K−1 −K−1 V [f | X,y]K−1

)
KT
d (84)

= Kdd −Kd

(
K−1 −K−1

(
K −KK−1

y K
)
K−1

)
KT
d (85)

= Kdd −Kd

(
K−1 −

(
I −K−1

y K
)
K−1

)
KT
d (86)

= Kdd −Kd

(
K−1 −

(
K−1 −K−1

y

))
KT
d (87)

= Kdd −KdK
−1
y KT

d . (88)

Note the similarity to the predictive distribution of f∗ for new cases X∗.
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B.2 The classification case

In the classification case, under the Laplace approximation to the posterior,

E [fd | X,y] = µd +KdK
−1 (E [f | X,y]− µ) (89)

= µd +KdK
−1
(
µ+K

(
∇ log p

(
y | f̂

))
− µ

)
(90)

= µd +KdK
−1
(
K
(
∇ log p

(
y | f̂

)))
(91)

= µd +Kd

(
∇ log p

(
y | f̂

))
, (92)

V [fd | X,y] = Kdd −Kd

(
K−1 −K−1 V [f | X,y]K−1

)
KT
d (93)

= Kdd −Kd

(
K−1 −K−1

(
K−1 +W

)−1
K−1

)
KT
d (94)

= Kdd −Kd

(
K +W−1

)−1
KT
d , (by the matrix inversion lemma) (95)

W = −∇∇ log p
(
y | f̂

)
. (96)
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C Distribution of average marginal effects

Since then γd is a constant ( 1/N ) times the sum of correlated normal random variables,

γd ∼ N

 1
N

N∑
i=1

mγdi ,
1
N2

N∑
j=1

N∑
i=1

cγdij

 , (97)

mγd
= E [fd | X,y] (98)

Cγd
= V [fd | X,y] (99)

Importantly, we may also get the average marginal effect of feature d within subgroups

of X rather than the full sample average by simply altering the indices of summation in

Equation 97.

However, for binary classification, we may be more interested in the distribution of

πd ,
1
N

N∑
i

∂ σ (f (xi))
∂ xid

(100)

than γd. Unfortunately, that distribution cannot be analytically expressed, though we can

readily simulate from it. First note that

∂ σ (f (xi))
∂ xid

= ∂ σ (f (xi))
∂ f

∂ f (xi)
∂ xid

. (101)

Generally the sigmoid function σ has a known derivative; for example, in the logistic case,

∂ σ (f (xi))
∂ f

= σ (f (xi)) (1− σ (f (xi))) . (102)

Since we have an approximation to the posterior on f , and given f , the posterior over fd is

fd | f ∼ N
(
µd +KdK

−1 (f − µ) , Kdd −KdK
−1 KT

d

)
, (103)

we can obtain M samples of πd by
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• drawing f t from N
(
µ+K

(
∇ log p

(
y | f̂

))
, (K−1 +W )−1),

• drawing f td from N
(
µd +KdK

−1 (f t − µ) , Kdd −KdK
−1 KT

d

)
,

• and calculating πtd = 1
N

N∑
i=1

∂ σ (f ti )
∂ f

f tid,

so that we can summarize the distribution of πd using the M draws, similar to the

CLARIFY procedure (King, Tomz, and Wittenberg 2000).

Moreover, another issue to consider is discrete variables in X. For binary variables, let

X∗1 be a set of test points where all feature observactions are identical to X except that

all observations of feature d have been set to 1, and analogously for X∗0.13 Then a more

appropriate quantity of interest rather than γd is

δd = 1
N

N∑
i=1

f (x∗1i)− f (x∗0i) , (104)

which gives the average marginal effect on y of taking a 1 vs a 0 value in the regression case,

or the average partial effect on f of taking a 1 vs a 0 value in the classification case. Letting

f1 = f (X∗1) and analogously for f0, δd is distributed

δd ∼ N

 1
N

N∑
i=1

mδdi ,
1
N2

N∑
j=1

N∑
i=1

cδdij

 , (105)

mδd
= E [f∗1 | X,y]− E [f∗0 | X,y] , (106)

Cδd
= V [f∗1 | X,y] + V [f∗0 | X,y] + C [f∗1 , f∗0 | X,y] + C [f∗0 , f∗1 | X,y] . (107)

For classification we can also simulate the distribution of

ψd = 1
N

N∑
i=1

σ (f (x∗1i))− σ (f (x∗0i)) (108)

by simply generating values of f (X∗1) and f (X∗0) from the posterior approximation, pushing

those samples through the chosen sigmoid σ, and calculate the average of the differences to
13You can replace 1 and 0 with other binary value labels as needed.
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get the average marginal effect for each sample so that we can summarize the distribution of

average marginal effects, similar to the continuous case. In the case of a categorical variable

that has been one-hot encoded into X, we can simply follow the above procedures for all the

substantively interesting pairwise comparisons between category labels. Moreover, in some

cases using this procedure to find the distribution of difference in MAP predictions at two

discrete values of a continuous variable may be more readily interpretable than πd.
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D Derivatives of mean and covariance functions

Regarding the derivatives of the mean function,

µ (X) = 0⇒ ∂ µ (xi)
∂ xid

= 0, (109)

µ (X) = Xβ ⇒ ∂ µ (xi)
∂ xid

= βd, (110)

to cover a couple of popular choices.

Note that calculating the mean and variance of the distribution of γd requires a twice-

differentiable covariance function. For the squared exponential covariance function with

automatic relevance determination,

k (xi,xj) = σ2
f exp

(
−1

2
∑
d

[
(xid − xjd)2

`2
d

])
. (111)

Then,

∂ k (xi,xj)
∂ xid

= k (xi,xj)
xjd − xid

`2
d

(112)

∂ 2k (xi,xj)
∂ xid∂ xjd

= k (xi,xj)
(

1
`2
d

+ (xjd − xid) (xid − xjd)
`4
d

)
, (113)

Note that when i = j, the cross partial simplifies to σ2
f/`

2
d.
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